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A linear-quadratic-Gaussian (LQG) compensator design procedure is proposed

for the DSS-13 antenna. The procedure is based on two properties. It is shown that
tracking and flex/hie motion of the antenna are almost independent (the separation

property). As a consequence, compensators for the flexible and tracking parts can
be designed separately. It is shown also that the balanced LQG compensator's effort

is evenly divided between the controller and the estimator. This allows a minimiza-

tion of the compensator order, which is important for implementation purposes.
An efficient compensator reduction procedure that gives a stable low-order com-

pensator of satisfactory performance is introduced. This approach is illustrated

with a detailed compensator design for the DSS-13 antenna. The implementation

of this compensator design requires an update of the antenna model.

I. Introduction

The linear quadratic controller for the DSS-14 antenna

was designed by Alvarez and Nickerson [1], and a linear
quadratic controller for the DSS-13 antenna was designed

by Gawronski [2]. The design method presented in this

article extends the results obtained in [2] for the case when
full-state feedback is not available.

The development of new high-performance controllers

for the DSN antennas is a current priority. The existing

proportional and integral (PI) controllers satisfy the re-

quirements for X-band (8.4-Ggz) tracking; they remain
simple, robust to parameter variations, and do not re-

quire detailed knowledge of the antenna dynamics. How-

ever, due to the recent pointing requirements for Ka-band

(32 GHz), new performance requirements for the antenna

controllers have emerged. The PI controllers have reached

their performance limits, therefore a new generation of

controllers has to be designed and developed. Also, in

order to improve controller performance, more sophisti-
cated and accurate antenna models have to be developed.

As a rule, the better the knowledge of the plant dynam-

ics, the better the performance that can be achieved by

the controller. The recently developed antenna models [3]
are accurate enough to give an opportunity to improve

tracking performance. The models allow simulation of si-

multaneous tracking in azimuth and elevation, and include

antenna flexible deformations up to 10 Hz.

Among the family of the model-based controllers, the

linear-quadratic-Gaussian (LQG) compensator has been

chosen for the DSN antennas because it is commonly

known to be performing well in industrial applications.
The LQG compensator consists of a controller and an esti-

mator. The controller drives the antenna, and the driving
control torques are determined from the knowledge of the

full antenna dynamics. Since only a small part of the an-

tenna dynamics is measured (by encoders), the estimator
is implemented to reconstruct the "missing" dynamics.
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The controller and the estimator designs consist of ad-

justing their gains through proper determination of the

controller and estimator weights. For the antenna model

of order n, 2n 2 weights have to be determined (n 2 for the

controller and n2 for the estimator). This number is cus-

tomarily dropped to 2n weights (n for the controller and

n for the estimator). But in-spite of this drastic reduc-
tion, the number of weights is still too large to make the

search for the best weights reasonable (typically n =- 40

for the antenna, i.e., 80 weights have to be found). The

difficulty arises because no general procedure for weight
determination is available, and the known procedures deal

with simplified and/or specific cases.

The weight determination presented here becomes sim-

ple due to several properties of the antenna and the com-

pensator investigated in this article. First, it is shown that
the tracking and flexible motion of the antenna are almost

separated. The tracking part consists of four states (ele-
vation and azimuth encoder readings and their integrals);

thus, instead of dealing with a model of order n, one ob-

tains two separate models of order 4 and n - 4. Secondly,

the LQG compensator is balanced such that the controller
and compensator efforts are the same. For the balanced

compensator, the weights of the controller and estimator
are the same, thus instead of 2n weights, n weights need to

be determined. Thirdly, it is shown that each component

of the balanced compensator (consisting of two states) is

almost independent of others. Thus, weights for each com-
ponent are determined separately. In consequence, the

search for 2n weights becomes a series of searches for 2

weights, which obviously is not a difficult task to perform.

As mentioned, the PI controller is easy to implement

due to its simplicity. But the implementation of the 40-
state model-based LQG compensator is not an easy task.

It would result in a complex algorithm, and would be a

huge computational burden. Therefore, a simplification of
the LQG compensator is an important implementation re-

quirement. The simplification is obtained through order
reduction of the compensator. The size of the compen-

sator is reduced, but one has to find a reduction procedure

such that the reduced-order compensator is stable and its

performance is still close to the full-order compensator.
This task is solved by introducing the pole mobility index.

Tile pole mobility index characterizes the importance of

the components of the balanced compensator. The states

with small pole mobility index are truncated, and the trun-

cation marginally affects the closed-loop dynamics. The

closed-loop system with the reduced compensator is sta-

ble, and its performance is close to the full-order compen-
sator. It is shown that the reduced-order compensator of

12 states is stable and its performance is close to the per-

formance of the full-order compensator of 40 states.

I!. Problem Statement

The closed-loop system with an LQG compensator is

shown in Fig. 1, with the plant state-space triple (A, B, C),

the process noise v of intensity V, and the measurement

noise w of intensity W, where both v and w are uncorre-
lated:

v = E(vvr), W = E(wwT)

E(v vr) = 0, E(v) = 0, = 0

(1)

where E(.) is an expectation operator. It is assumed that
W --= I without loss of generality. The task is to determine

the controller gain (Kp) and estimator gain (K_) such that
the performance index J

(// )J = E (xTQx + urRu)dt (2)

is minimal, where R is a positive definite input weight ma-

trix, and Q is a positive semidefinite state weight matrix.

It is assumed that R = I, also without loss of generality.

The minimum of Y is obtained for the feedback u = -Kpz,
where the gain matrix

Kp = BT s (3)

is obtained from the solution S of the controller Riccati

equation (CARE) [4,5]:

ATs + SA - SBBTS W Q = 0 (4)

The optimal estimator gain is given by

K_ = PC T (5)

where P is the solution of the estimator Riccati equation

(FARE):

AP + PA T - pcTcp + V = 0 (6)

The LQG compensator performance can be signifi-
cantly modified through variations of weight Q and vari-

ance V. Although V is formally predetermined by the

process noise v, it can be modified in a search for a more

suitable solution [5,6]. The determination of the weight
and covariance is addressed in the following section.
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Another nontrivial issue addressed here is the order of

the compensator. Although the size of the plant deter-
mines the size of the compensator, in many cases a full-size

compensator is not acceptable for implementation due to

its complexity. Thus, its order must be minimized in such

a way that the reduced compensator maintains the stabil-
ity and performance of the full-order compensator. The

solution to this problem is found through the approximate

balancing of the CARE/FARE equations.

II!. Quasi-Separation of Flexible and
Tracking Subsystems

The open-loop (or rate-loop) state-space representa-

tion (A, B, C) of the DSS-13 antenna includes the input

upT = [upe upa], which consists of the rate commands
in elevation (upe) and azimuth (uva) and the outputs

yT = [yp_ Ype] and yT = [yi_ Yia], which consist of the
elevation and azimuth angles (Ype, Ypa) and their inte-

grals (yi_, yia). Divide the state vector x of the open-loop

antenna model into the tracking xt and flexible xf parts

xT= [C xy] (r)

where x T = [yT yf] and x] are the remaining states. It
can be shown [2] that, in this case, the rate-loop represen-

tation (A, B, C) has the form

A=[A,0A,,]A,"=E c=,c,0,
and that

IIB,II<<IIB:ll,IIAtyli<<llAtll,IIA,!II<<IIA:I[(9)

For the DSS-13antenna, I1B, II< 10-5, 11BXII> 1, II
At:l[ < 10-3 , [[A! ][ > 10, and I[At [] = 1. Thus, the
states of the tracking part are much weaker than the states

of the flexible part. The strong and weak signal flow is

shown in the block diagram of Fig. 2. The strong states of
the flexible subsystem and the weak states of the tracking

subsystem are shown in Fig. 3, which presents the transfer

function plots of the rate-loop systems due to elevation
rate command.

In the LQG design, the performance index is minimized
and the minimum is obtained for I( = BTs, and oe is a

solution of the Riccati Eq. (4). Divide S and K into parts

related to the triple (A, B, C) in Eq. (8)

[ S_! St.:]
S = , K = [Kt K:] (10)

S:

so that Eq. (4) can be written as follows

ATSt + StAr - StBtBT St + Ot - At! = 0 (lla)

ATst ! + &,,A] + StAr/- KTKI = 0 (llb)

AyS.: + S!A/+ S!B!B_S! + Q.: - A.:t= 0 (llc)

where

:,!,=ASs,:+SSA,!- ]
+ & B: B T,&:

Atl = S, BtBf S_ + StIBIKt

(12a)

Iq = B_,s,: + sys!, K, = B_,S, + B:_'S,!_ (12b)

Taking a closer look at Eqs. (12), notice that there exist

weights Qt and Q! such that the gain K] depends on the

flexible subsystem only. Namely, for large enough Q!, such

that H Q! II >> H Air H, the solution S! of Eq. (llc) is
independent of the tracking system, and for small Q_, one

obtains HBTStI H << HSfS] H. In terms of Eq. (12a), the
latter inequality means that the gain K! depends only on
the flexible subsystem. However, due to the master-slave

relationship between flexible and tracking subsystems, the
situation is not quite symmetric: There are no such Qt

and Q! that the gain Kt depends only on the tracking
subsystem. To understand this, note that the term "small"

has a different meaning for QI and Qt. Magnitudes of

small Q] and small Qt are of different order, namely small
Q! is such that Q! < 10 -7, and small Qt is such that

Qt < 1. Therefore, by increasing Qt in order to obtain

[IQt [[ >> It At/H one obtains ITB_SIt [I and IIBTst ]l of the
same magnitude. According to Eq. (12b), the latter fact

means that the gain Kt depends on the flexible subsystem,
as well as on the tracking subsystem, and the solution St

of Eq. (lla) is dependent on the flexible subsystem. This
property can be validated by observation of the closed-

loop transfer functions for different weights (Fig. 4). The

plots show that the variations of Q! changed the properties
of the flexible subsystem only, while the variations of Qt

changed the properties of both subsystems.

The weight Qt should be large enough to achieve the

pointing performance requirements, and the increase of Qt
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causes increasing dependency of the gains on the track-
ing system. For this reason the above independence be-

comes a quasi-independence in the final stage of controller

design. Nevertheless, the separation in the initial stages

of controller design is very strong. The design consists,
therefore, of the initial choice of relatively small weights

for the tracking subsystem and determination of the con-

troller gains of the f/exible subsystem. It is followed by

adjustment of weights of the tracking subsystem and a fi-
nal tuning of the flexible weights.

The quasi-separation principle discussed above in the

case of the controller design is also valid in the case of

estimator design, since the compensator design consists of

the independent designs of a controller and an estimator

[4,5]. Additional properties of the LQG compensator that
arise in controls of flexible structures are discussed in the

following section.

IV. Balanced LQG Compensator for
Flexible Structures

In this section the flexible subsystem is considered only

(subscript "f" is dropped in this section for simplicity of

notation). A flexible structure is defined as a controllable

and observable linear system with distinct complex con-

jugate pairs of poles (N poles, N is even) and with small
real parts of the poles. In other words, it is a linear sys-

tem with vibrational properties. In the Moore balanced

coordinates, it consists of n = N/2 components [7,8], and
each component consists o_ two states.

An approximately balanced LQG compensator is con-

sidered. An approximate equality between two variables is

used in the following sense: Two variables x and y are ap-

proximately equal (x _ y)ifx = y+e, and II_II/tlYll << 1.

The block diagram of a closed-loop flexible system with

the LQG compensator is shown in Fig. 5. Similar to the

balancing of controllability and observability grammians
is the balancing of CARE and FARE equations. Namely,

there exists a diagonal positive definite M = diag (,ui), i =
1,...,n, pi > 0, such that

S = P = M (13)

A state-space representation with the condition

Eq. (I3) satisfied is called an LQG balanced representa-

tion, and/q, i = 1, ...,n represents the characteristic val-

ues of (A, B, C). Jonckheere and Silverman [9] and Op-

denacker and Jonckheere [113]have shown that a balanced

solution for CARE and FARE equations exists in the case

of Q = cTc and V = BB T. Gawronski [11] has shown
that the balanced LQG representation exists in the case of

general Q and V, arid has derived the transformation to

the balanced LQG representation.

Let (A, B, C) be a state-space triple of an open-loop

system. Its controllability and observability grammians
Wc and Wo are positive-deflnite and satisfy the Lyapunov

equations

AWe + WcA T q- B13 T ----0

ATwo + WoA + CC T = 0

(14)

The system representation is balanced in the sense of

Moore [12] if its controllability and observability gram-
mians are diagonal and equal:

Wc=W,,=F 2, F=diag(71,...,TN), i= ],...,N (15)

where 7i > 0 is the ith Hankel singular value of the system.

In [11] it is shown that, for flexible structures, the balanced

representation (in the Moore sense) produces diagonally
dominant solutions of CAKE and FARE, and in the case

of Q = V produces approximate LQG balanced solutions

S and P, such that S _ P -_ M. Assume a diagonal
weight matrix Q:

Q = diag(qiI2), i = 1, ..., n (16)

Then there exists qi <_ qoi, where qoi > O, i = 1, ..., n, such

that S _ diag (s_I2) is the solution of Eq. (4), where

si = (/3pi - 1)/27i 2, /3p2i= 1 + 2qiv?/¢iwl (17)

The proof is presented in the Appendix. The plots of si

with respect to qi and 74 are shown in Fig. 6. They show an
increase of si with the increase of weight qi, and decrease

of si with increase of 73 or _iwi.

A similar result is obtained for the FARE equation,

namely, for a diagonal V:

V = diag(viI_), i = l, ..., n (18)

there exists vi < Voi, where Voi > 0, i = 1, ...,n, such that

P "_ diag(piI_) is the solution of Eq. (6), where
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pl = (/3_i - 1)/27_, /3_i = 1 + 2viT_l_iw (19) flvi = ¢cilG = _oil_ci (24)

If the /th diagonal entry of P and the respective entry

of S are equal, say to pi, i.e.,

p; =si=m (20)

the ith component is LQG balanced; if S and P are equal

the system is LQG balanced. If S, P, and M are diago-

nally dominant, i.e. v; + e_i "_ s; + e_i _- lai, with c_i

and c,i small ([ c,_i/vi [ << 1, I e,i/s; I << 1), the system is

approximately LQG balanced.

It follows from Eqs. (17) and (19) that for Q =

diag(qi) = V = diag(vi), the system is approximately LQG

balanced, such that

S _- P "_ M = diag(pi)

p; = (/3; - 1)/272, [37 = 1 + 2q1771¢_

(21)

i.e., flpi is a ratio of closed- and open-loop damping factors,
or it is a ratio of open- and closed-loop resonant peaks.

Therefore, if a suppression of the ith resonant peak by the

factor flpl is required, the appropriate weight ql is deter-
mined from Eq. (17):

q, = 0.5(n , - 1)¢,,.,,'r72 (25)

An alternative interpretation of/3i is as a ratio of the

open-loop Hankel singular value to the closed-loop Hankel

singular value:

fli ---- 2 27oi/7_; (26a)

or a ratio of variances of open-loop ((ro2i) and closed-loop

((r_i) states excited by the white-noise input [13]:

O'oi I O'cifli = 2 2 (26b)

Next it is shown that the weight Q

Q = diag(O, O, ..., qiI2, ...0, 0), qi < qoi (22)

shifts the /th pair of complex poles of flexible structure,

and leaves the remaining pairs of poles almost unchanged.

Only the real part of the pair of poles is changed (just mov-

ing the pole apart from the imaginary axis and stabilizing

the system), and the imaginary part of the poles remains
unchanged. Namely, for the weight Q as in Eq. (22), the

closed-loop pair of flexible poles (Ae_i, -I-j)Leii) relates to

the open-loop poles ()_o,.i, -4"J_oii) as follows:

()t¢_i, +j)_¢;i) _ (13p;)_o,i, -4-j)%i;), i = 1, ..., n (23)

where flpi is defined in Eq. (17). The proof is presented in
the Appendix.

The real part of the poles is shifted by /3vi, while the

imaginary part remains unchanged. The above proposition
has additional interpretations. Denote the real part of

the open-loop pole by ,_o_i = -_;wi and the real part of

the closed-loop pole by A_i = -_;wi; note also that the

height of the open-loop resonant peak is aoi = x/2_iwi,
where _: is a constant, and the closed-loop resonant peak

is a_; = tc/2_ciwi. From Eq. (23), tip; = A_,-i/)_ori; thus,
one obtains

The proof is presented in the Appendix.

The plots of/3pi with respect to qi and 7; are shown in

Fig. 7. They show relatively large/3pi even for small qi, i.e.,
a significant pole shift to the left. Also,/3pi increases with

the increase of 7;, and decreases with the increase of (iCOi,

i.e., there is a significant pole shift for highly observable
and controllable states with small damping. In terms of

the transfer function profile, the weight qi suppresses the

resonant peak at frequency wi while leaving the natural

frequency unchanged. Due to weak coupling between the
states, the assignment of one pair of states does not signif-

icantly impact other states. Thus, the weight assignment

can be done separately for each pair of states.

The estimator poles are shifted in a similar manner.
Denote

V = diag(O, O, ..., viIg_, ...0, 0), vi < Voi (27)

then for the weight V as in Eq. (27) and v; < Voi, the

estimator pair of poles ()_e,-i, -4-j_,,) relates to the open-

loop poles (Ao,-;, +j)_oii) as follows:

()_eri, -t-j)_eii) "_ (/3ei,_ori, q-j)_oii), i = 1,...,n (28)

where/3_i is defined in Eq. (19).
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The limiting values qoi and voi are determined. Their
values are rather fuzzy numbers. Despite their fuzziness,

they are not difficult to determine. There are several indi-

cators that q, is approaching qoi, or that vi is approaching
voi. For the controller, qoi is the weight for which the

ith pair of complex poles of the plant departs from the
horizontal trajectory in the root-locus plane, or it is the

weight for which the ith resonant peak of the plant trans-
fer function disappears (the peak is flattened). For the

estimator, voi is the covariance for which the ith pair of

complex poles of the estimator departs from the horizon-
tal trajectory in the root-locus plane, or it is a covariance
for which the ith resonant peak of the estimator transfer

function disappears.

It is crucial from an implementation point of view to ob-

tain a compensator of the smallest possible dimension that

preserves the stability and performance of the full-order

compensator. Although the size of a plant determines the
size of a compensator, the plant model cannot be reduced

excessively in advance in order to assure the quality of the

closed-loop system. Therefore, compensator reduction is a

part of the compensator design. The balanced LQG design

procedure provides this opportunity.

To successfully perform the compensator reduction, an

index of the importance of each compensator component
is introduced. In the open-loop case, Hankel singular val-
ues serve as reduction indices. In the closed-loop case, the

characteristic values of the system seem to be good can-

didates for the reduction indices, as suggested in [9]. This

is not a good choice, however, since the characteristic val-
ues do not properly reflect the effectiveness of the com-

pensator. The effectiveness of the closed-loop system can

be evaluated by the relative suppression of the closed-loop

output when compared to the open-loop output. Thus, the
ratio of variances of the closed-loop output and the open-

loop output excited by the white noise input is an appro-

priate measure of the suppression (alias the compensator

performance). It will be shown later that the suppression

depends on pole mobility in the complex plane. Therefore,
ira particular pair of poles is easily moved (i.e., in the case

when small weight is required), the respective states are

easy to control and to estimate. On the contrary, if a par-
ticular pair of poles is difficult to move (i.e., a large weight

is required to move the poles), the respective states are
difficult to control and to estimate. In the latter case, the

action of the compensator is irrelevant, and the states that

are difficult to control and estimate can be reduced; thus,

pole mobility is a good indicator of the importance of a

particular compensator state.

Consider an LQG balanced system, and denote the pole

mobility index ri by

7ri = 0.5(j3i - 1) (29)

Note that for/3i = 1, the ith pole is stationary and _'i is

equal to zero; for a shifted pole, one obtains/3i > 1 and

7ri > 0. If for small _ri a small pole shift (in plant, as well as
in estimator) is observed, this component can be reduced.

Another useful interpretation follows from Eqs. (29)

and (26):

_ = 0.5(.ro21 2 2-'ro,)l'yo, = 0.5(_o_, 2- c%i)/aci (30)

i.e., the pole mobility index is proportional to the relative

change in the white noise response of the open- and closed-

loop systems. Furthermore, from Eqs. (21) and (29), it can
be shown that the pole mobility index is a product of the

square of a Hankel singular value and the characteristic

value of the system:

ri = 7_gl (31)

Thus, 7ri combines the system observability and controlla-

bility properties of the open-loop system with the closed-

loop performance. The more heavily weighted the com-

ponent, the larger its pole mobility index, see Fig. 8(a).

Also, the larger the Hankel singular value of the compo-
nent, the larger the corresponding pole mobility index, c.f.

Fig. 8(5).

The matrix II of pole mobility indices is defined as

H = diag(_l,_2,...,_n-l,rn) (32)

and it is obtMned _om Eqs. (15) and (29) as

H = F2M (33)

In the following, a reduction technique is discussed. As-
sume II in Eq. (32) has a descending order, i.e., 7ri > 0,

_ri+l g _'i, i = 1,...,n, and divide H as follows:

II -- diag(II,, II,) (34)

where II_ consists of the first k entries of II, and II, the

remaining ones. If the entries of l-I, are small in compari-
son with the entries of II_, the compensator is reduced by

truncating its last n - k states.

88



It isshownin [11]thatasystemwiththereduced-order
compensatorobtainedbyreducingstateswithsmallII_ is

expected to be stable. That is, although it is not guar-

anteed, there is a well-founded expectation to obtain a

stable system with the reduced-order compensator. Also,
the estimation errors of the full-order and reduced-order

compensators are approximately the same.

V. Closed-Loop System

The LQG compensator configuration for the DSN an-
tenna is shown in Fig. 1. The tracking command y_ is

compared with the estimated antenna position _)p, and the

error e = _)p - y_ along with the integral ei of the error
e are the plant inputs. The equations for the integrator,

plant, and the estimator are, respectively,

]e = Az + Bu, yp = Cpx, xl = Clx

= Aic + Bu + I(e(yp - Cp3:)

u : -K]x! -- Kve - Kiei

T = [eT xT _T], one obtainsDenoting xj

xcz ----Actxct + Bdyc, y = Cdxd

where

(35a)

(355)

(35c)

(36a)

Acl = o o 1-BKi A -BK!C! - BKpCp ,

-BKi KeCp A- BKjC! - Bl_pCp - KeCp

Bcl = I1BI<p ,

BKpJ

ccz = [0 cp 0]

The triple (A,a, B_a, C¢_) for the LQG system with the reduced-order estimator (At, Br, Cr) is as follows:

Acl = i o o cp-BKi A -B[(!V!r - BKpVpr

L-B_IQ Ke_Vp Ar - BrKjCJr -- BrKpCpr - KerCpr

, Be1 = BKp ,

B_ Kp J

c_ = [0 c_ 0]

where Cp_ and C!r are obtained from the partition of Cr, Cr = [Cpr C1r 1.

(36b)

(37)

VI. Compensator Design Algorithm

Weights for the balanced LQG controller and estimator
are identical. Therefore, in the algorithm, the controller

and estimator gains are adjusted simultaneously. The pro-
cedure for the antenna LQG compensator design is a se-

quential one. First, for the ad hoc (but relatively small)
chosen tracking subsystem weights, the flexible subsystem

weights are determined (recall that the controller and es-

timator weights are the same). Second, the adjustment

of the tracking system weights is performed, followed by

final adjustment of the flexible system weights. The flexi-

ble subsystem weights are determined sequentially, which

gives more insight into the system performance and sim-

plifies the procedure.

The estimator order is determined as a part of the

weight tuning process. Only the modes with large index
7ri are considered. If the number of flexible modes is n!,

the number of disregarded modes is no, and the size of

the tracking system is nt, then the controller order n¢ is

n_ = n¢ + 2(n! - no). The following LQG compensator
design algorithm is proposed:

(1) Determine the plant state-space representation in
the form of Eq. (8), consisting of flexible and track-

ing parts.

(2) Choose ad hoc but reasonably small weights and
variances for the tracking part Qt = Vt = Qtah.
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(3) For each balanced coordinate of the flexible part,
choose the weight q_, i = 1,...,n l, and define the

weight and covariance matrices Qli --

diag (0,0,...,qi, qi,O,O,...O), Vyi = Qyi so that
the closed-loop system performance for the weight

Qi = diag(Qtah, Q.ti) and the covariance V_ = Qi is
optimized. For example, determine the weights qi to
impose the required pole shift or to suppress the ith

resonant peak to the required level without depre-

ciating other properties of the closed-loop transfer
function. Note that for small qi, only the ith pair

of poles is shifted (to the left), and the remaining
poles are almost unaffected. Disregard the modes

with small index a', for which the weighting does

not improve the closed-loop system performance.

(4) For the already determined Q! and VI, tune weight
Qt and assume eovariance Vt = Qt to obtain im-

provements in tracking properties of the antenna.

(5) Adjust flexible subsystem weights, if necessary.

VII. Applications

A balanced LQG compensator was designed for the
DSS-13 antenna. The DSS-13 antenna model consists of

two tracking states (azimuth and elevation angle) and 13

flexible modes (or 26 balanced states). The preliminary

weights qie = qpe = qi,_ = qpa = 1 for the tracking sub-

system (for yi and yp) and zero weights for the flexible
subsystem (ql = q2 .... = q13 ---- 0 for all 13 modes)
were chosen. The closed-loop system step response is pre-

sented in Fig. 9 (azimuth encoder reading due to azimuth

command) and the magnitudes of the closed-loop trans-
fer function in Fig. 10. Both figures show that flexible
motion of the antenna is excessive and should be damped

out. This is achieved by adjusting weights for the flexible

subsystem. For the tracking weights as before, the weight

for the first mode (2.32 Hz) is chosen to be ql : 10-7, and
the remaining weights are zero, obtaining the closed-loop

system responses as shown in Figs. 11 and 12. One can see
that the 2.32-Hz resonance peak in the azimuth command

response (Fig. 11) has disappeared, along with most of the
flexible motion in the azimuth step response (Fig. 12). The

elevation motion is unaffected, however, since the azimuth
mode is almost nonexistent in the elevation motion.

The weight should be chosen carefully. Weight that is

too small (e.g., 3 x 10 -9 in the case considered) will not

suppress the resonant peak, Fig. 13(a). Weight that is

too large (e.g., 10 -5 ) will deteriorate the tracking perfor-

mance: for the overweighted mode the transfer function is

pressed down within a wide frequency range, Fig. 13(b).

The proper weight suppresses the resonant peak, leaving

the other peaks unchanged.

Similar procedures have been applied for the second

(2.64-Hz), third (4.26-Hz), fourth (3.77-Hz), fifth (7.92-
Hz), sixth (4.47-Hz), seventh (3.38- Hz), eighth (5.98-Hz),

ninth (7.32-Hz), and tenth (9.48-Hz) modes, with weight
10 -7 for each mode. As a result, the suppression of the

remaining flexible motion is observed as shown in Fig. 14.
Weights for the remaining modes (eleventh through thir-

teenth) have been set to zero.

The root locus of the closed-loop system due to weight

variations of the 7.92-Iiz (fifth) mode is shown in Fig. 15.

The figure shows the horizontal departure of poles to the

left (stabilizing property). It confirms the properties of

the weighted LQG design described previously.

In the next step, the tracking properties of the system

are improved by proper weight setting of the tracking sub-

system. Namely, setting the integral weight to qi_ = qi_ =

70 and the proportional weight to %c -- qpa = 100 im-
proves the system tracking properties, as shown in Fig. 16

(small overshoot and settling time) and in Fig. 17 (ex-
tended bandwidth up to 2 Hz). tIowever, by improving the

tracking properties, the transfer function has been raised
dramatically in the frequency region of 1 to 3 Hz, which

forces the first two modes located in this region to ap-

pear again in the step response. By sacrificing a bit of

the tracking properties, the flexible motion in the step re-

sponse is removed. This is done by slightly increasing the

weights of the flexible subsystem, setting them as follows:
ql = q2 = q3 ----q4 --- qs = q6 ---- 10 -6, q7 ----qs ---- 10-7, and

q9 = ql0 = 10-5. The closed-loop system response with

satisfactory tracking performance is shown in Figs. 18 and

19 (small overshoot, settling time, and 1-Hz bandwidth
are observed).

The reduced-order compensator is obtained through

evaluation of pole mobility indices ri. The plot of rri is

shown in Fig. 20. Reducing the order of the estimator

to 12 states [the first four are tracking states (states 1 to

4), the next six are flexible states (states 5 to 10), and
the last two states are nonflexible components of the rate

loop model (states 25 and 27)] gives the stable and accu-
rate closed-loop system. The reduced-order compensator

is compared with the full-order compensator in the step

response plots in Fig. 21, and the transfer function plots

in Fig. 22, showing satisfactory approximation.

VIII. Conclusions

A method for designing a reduced-order compensator

for the DSS-13 antenna has been presented.-A balanced

LQG compensator has been introduced that uses the same
amount of effort to control and to estimate the system.

9o



The properties of the balanced LQG system are used
to obtain a reduced-order compensator for the antenna.

This compensator preserves the stability and performance

of the full-order compensator. The performance of tile

reduced-order compensator has been verified by simula-
tions.
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Appendix

I. Selected Properties of Flexible Systems

The balanced grammian for a flexible system with n

components (or N = 2n states) has the following form

[7,8]:

F _- diag(71,_'l,'Y_,72, ...,%_,7,,) (A-l)

The system matrix A is almost block diagonal, with dom-

inant 2 x 2 blocks on the main diagonal:

There are two solutions of Eq. (A-6), but for a stable sys-

tem and for qi = 0 it is required that si = 0, therefore

Eq. (17) is the unique solution of Eq. (A-6).

Ill. Proof of Eq. (23)

For small qi, tile matrix A of the closed-loop system is

diagonally dominant Ao _ diag (Aol), i = 1,...,n, and

Aoi = Ai - BiBTsi. Introducing Eq. (A-3), one obtains

Aoi _ Ai + 2siT_(Ai + A T) (A-7)

r/__o,_ -ovi l/ i = 1,...,n
A _ diag(Ai), Ai = _Gca _J ,

(A-2)
l wi

where wi is the ith natural frequency of the structure, and

_i is the ith modal damping. The matrices B and C are
divided into two blocks, comparably to A, B T = [B1T,

BT T..., B, ], and C = [C1, C2, ..., Cn], with the following

property:

and introducing Ai as in Eq. (A-2) to Eq. (A-7) one obtains

Ao_ = [-flpi_,w, -w, ] (A-8)

with ]3pi as in Eq. (17).

BiB T _ cTci _- -7_(Ai + A T) (A-3)

II. Proof of Eq. (17)

Due to the diagonally dominant matrix A for a flexi-
ble structure in balanced representation, and for Q as in

Eq. (16), there exists ql <_ qoi, i = 1, ..., n, such that the so-
lution S of the Riccati Eq. (4) is also diagonally dominant

with 2 × 2 blocks Si on the main diagonal:

Si_-siI2, si>O, i=l,...,n (A-4)

Thus, Eq. (4) turns into a set of the following equations:

si(Ai+A T )-s2iBiB T +qiI2=O, i= 1 .... ,n (A-5)

IV. Proof of Eqs. (26a) and (26b)

in order to prove Eqs. (26a) and (26b), the closed-loop

Lyapunov equation is considered:

(A - BBTS)F_ + F_(A - BBTS) T + BB T _ 0 (A-9a)

or, for the ith pair of variables,

T 2 2
(Ai-BiB i si)Tci+Tei(mi--BiBTsi)T +BiB T "_ 0 (A-9b)

Introducing Eq. (A-3) gives

2 _ 2_")'e2/+ 23'ci')'oiSi -- 7oi 0 (A-10)

For a balanced system BiB T _- -_ (Ai + A T) and Ai +

A T = -2(iwiI_, see Eqs. (A-3) and (A-2), respectively.

Therefore, Eq. (A-5) is now

or

2 2 ,_ 2si7o2i (A-11)7oi/7ci = 1 +

2 + s,/77 - 0.5qi/¢,wiT? = 0, i = 1, ..., n (A-6) Comparing Eq. (A-11) and Eq. (17) gives Eq. (26a).Si
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